首页> 外文OA文献 >Biologically inspired computational structures and processes for autonomous agents and robots
【2h】

Biologically inspired computational structures and processes for autonomous agents and robots

机译:受生物启发的自主代理和机器人的计算结构和过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent years have seen a proliferation of intelligent agent applications: from robots for space exploration to software agents for information filtering and electronic commerce on the Internet. Although the scope of these agent applications have blossomed tremendously since the advent of compact, affordable computing (and the recent emergence of the World Wide Web), the design of such agents for specific applications remains a daunting engineering problem;Rather than approach the design of artificial agents from a purely engineering standpoint, this dissertation views animals as biological agents, and considers artificial analogs of biological structures and processes in the design of effective agent behaviors. In particular, it explores behaviors generated by artificial neural structures appropriately shaped by the processes of evolution and spatial learning;The first part of this dissertation deals with the evolution of artificial neural controllers for a box-pushing robot task. We show that evolution discovers high fitness structures using little domain-specific knowledge, even in feedback-impoverished environments. Through a careful analysis of the evolved designs we also show how evolution exploits the environmental constraints and properties to produce designs of superior adaptive value. By modifying the task constraints in controlled ways, we also show the ability of evolution to quickly adapt to these changes and exploit them to obtain significant performance gains. We also use evolution to design the sensory systems of the box-pushing robots, particularly the number, placement, and ranges of their sensors. We find that evolution automatically discards unnecessary sensors retaining only the ones that appear to significantly affect the performance of the robot. This optimization of design across multiple dimensions (performance, number of sensors, size of neural controller, etc.) is implicitly achieved by the evolutionary algorithm without any external pressure (e.g., penalty on the use of more sensors or neurocontroller units). When used in the design of robots with limited battery capacities , evolution produces energy-efficient robot designs that use minimal numbers of components and yet perform reasonably well. The performance as well as the complexity of robot designs increase when the robots have access to a spatial learning mechanism that allows them to learn, remember, and navigate to power sources in the environment;The second part of this dissertation develops a computational characterization of the hippocampal formation which is known to play a significant role in animal spatial learning. The model is based on neuroscientific and behavioral data, and learns place maps based on interactions of sensory and dead-reckoning information streams. Using an estimation mechanism known as Kalman filtering, the model explicitly deals with uncertainties in the two information streams, allowing the robot to effectively learn and localize even in the presence sensing and motion errors. Additionally, the model has mechanisms to handle perceptual aliasing problems (where multiple places in the environment appear sensorily identical), incrementally learn and integrate local place maps, and learn and remember multiple goal locations in the environment. We show a number of properties of this spatial learning model including computational replication of several behavioral experiments performed with rodents. Not only does this model make significant contributions to robot localization, but also offers a number of predictions and suggestions that can be validated (or refuted) through systematic neurobiological and behavioral experiments with animals.
机译:近年来,智能代理程序的应用激增:从用于太空探索的机器人到用于信息过滤和互联网上电子商务的软件代理。尽管自从紧凑的,负担得起的计算(以及最近出现的万维网)问世以来,这些代理应用程序的范围已蓬勃发展,但针对特定应用程序的此类代理设计仍然是一个艰巨的工程问题;从纯工程学的角度来看,本文将人工动物视为动物,并在设计有效的生物行为时考虑了生物结构和过程的人工类似物。特别地,它探索了由人工神经结构产生的行为,这些行为被进化和空间学习过程适当地塑造。本论文的第一部分是关于人工神经控制器对盒推式机器人任务的演化。我们表明,即使在反馈匮乏的环境中,进化也只需要很少的特定领域知识就可以发现高适应性结构。通过对进化设计的仔细分析,我们还展示了进化如何利用环境约束和特性来产生具有较高适应性的设计。通过以受控方式修改任务约束,我们还展示了进化的能力,可以迅速适应这些变化并利用它们来获得显着的性能提升。我们还使用演变来设计推箱机器人的感官系统,尤其是其传感器的数量,位置和范围。我们发现,进化会自动丢弃不必要的传感器,而仅保留那些似乎会严重影响机器人性能的传感器。进化算法可在没有任何外部压力(例如,使用更多传感器或神经控制器单元的代价)的情况下隐式地实现跨多个维度(性能,传感器数量,神经控制器大小等)的优化设计。当在电池容量有限的机器人设计中使用时,evolution会产生节能的机器人设计,该设计使用最少的组件数量,但性能却相当不错。当机器人可以使用空间学习机制来学习,记忆和导航到环境中的动力源时,其性能和复杂性都会增加。本论文的第二部分对机器人的计算特性进行了描述。已知在动物空间学习中起重要作用的海马结构。该模型基于神经科学和行为数据,并基于感官信息和停滞的信息流之间的相互作用来学习位置图。该模型使用称为Kalman滤波的估计机制,显式处理两个信息流中的不确定性,从而使机器人即使在存在感应和运动错误的情况下也可以有效地学习和定位。此外,该模型还具有处理感知混叠问题(环境中的多个位置在感觉上相同),逐步学习和集成本地位置图以及学习和记住环境中多个目标位置的机制。我们展示了这种空间学习模型的许多特性,包括用啮齿动物进行的若干行为实验的计算复制。该模型不仅为机器人的定位做出了重要贡献,而且还提供了许多预测和建议,这些预测和建议可以通过动物的系统性神经生物学和行为实验来验证(或驳斥)。

著录项

  • 作者

    Balakrishnan, Karthik;

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号